

Market Segment Watch Second-life and recycling of electric vehicle lithium-ion batteries

February 2019

Over 200 GWh potential of second-life EV batteries from by 2030

120 MW of second-life projects around the world

Techno-economic analysis: strategic business insights and economic model for second-life battery projects

Business model for battery recycling

Report Price 2500€ (sales tax not included)

Clean Horizon Consulting – Paris, France Clean Horizon Americas – Miami, Florida USA https://www.cleanhorizon.com/online-store/ Email: reports@cleanhorizon.com

Market Segment Watch: Second-life and recycling of electric vehicle lithium-ion batteries

Table of contents

Executive summary	2
Table of figures	6
Introduction	7
Production of lithium-ion batteries – increase in volume	7
EV uptake and the demand for energetically dense batteries	7
Chemistries of lithium-ion batteries	9
Nickel Manganese Cobalt (NMC)	11
Nickel Cobalt Aluminum (NCA)	11
Lithium Iron Phosphate (LFP)	12
Other lithium-based batteries	12
Nickel-based batteries	13
Economic and environmental concerns for "end of life" EV batteries	15
Lifetime of lithium-ion batteries in EVs	17
Recycling of lithium-ion batteries	17
Policy concerning recycling	19
Europe	19
North America	20
Metals of interest	21
Cobalt	23
Nickel	24
Lithium	25
Copper	26
Material volumes	26
Methods of recycling lithium-ion batteries	28
Pyrometallurgic	28
Hydrometallurgical	29
Mixed treatment	31
Direct physical treatment	31
Economics of battery recycling	32
Recycling costs and potential revenues	33
Transportation and collection costs	36
Recycling companies and actors	36
Concerns with collection, transportation, and hoarding	38
Second-life applications	39
Rationale for second-life applications	41
Current methods and obstacles	42
Direct removal	43
Dismantling and repurposing PROPRIETARY - Copyright © 2019 Clean Horizon Consulting	44 4

Market Segment Watch: Second-life and recycling of electric vehicle lithium-ion batteries

Alternative methods	44
Pricing and availability	45
Market potential for EV second-life batteries	45
Economic comparison and competitiveness of second-life batteries	46
Environmental impacts of second-life battery projects	49
Life cycle analyses and environmental impacts	49
CO ₂ credits and avoidance	50
Current and future projects concerning second-life applications	53
DTE Energy's Community Energy Storage	55
Aceleron	55
ELSA Gateshead College second-life project	55
EcarACCU	56
Renault	56
Audi	57
Volkswagen	57
BYD	58
Nissan-Mitsubishi	58
Volvo	59
Hyundai	59
Daimler – Mercedes-Benz	60
General Motors	61
Toyota	61
BMW	61
Conclusions	62

Market Segment Watch: Second-life and recycling of electric vehicle lithium-ion batteries

Table of figures

Figure 1. Uptake of EV sales and vehicle OEMs	
Figure 2. Worldwide electric vehicle stock (2013 - 2017)	9
Figure 3. Cross section of a lithium-ion battery with typical anode and cathode chemistrie	s 10
Figure 4. The different battery chemistries used in various EVs	
Figure 5. Typical EV battery metal content (kg/kWh)	
Figure 6. Concept of circular economy for EV batteries	
Figure 7. Material and metal demand for lithium-ion battery packs for passenger electric	vehicles
	21
Figure 8. Material demand from electric vehicle sector in terms of total world demand (20 2021 forecast)	016 and 22
Figure 9. Cost breakdown of an NMC 1-1-1 cell	22
Figure 10. Estimated potential recovery volumes of materials in NMC batteries	
Figure 11. Advantages and drawbacks of the pyrometallurgical recycling method	29
Figure 12. Pyrometallurgical physical recycling process	29
Figure 13. Advantages and drawbacks of the hydrometallurgical recycling method	30
Figure 14. Chemical treatment: Hydrometallurgical recycling process	30
Figure 15. Advantages and drawbacks of the mixed recycling method	
Figure 16. Intermediate physical recycling process	
Figure 17. Advantages and drawbacks of the direct physical recycling method	
Figure 18. Direct physical recycling process	
Figure 19. Mass repartition of lithium-ion NMC 1-1-1 EV battery	
Figure 20. Potential revenue streams for recycling metals in NMC And NCA batteries (2018)	October 34
Figure 21. Potential revenues from recycling Co, Ni, and Cu (90% recovery yield) fro batteries depending on their cathode composition	m NMC 35
Figure 22. Actors in lithium-ion and NiMH battery recycling by method	
Figure 23. Lithium-ion battery recycling capacities of current recycling actors	
Figure 24. Estimated volumes for second-life applications (in GWh)	40
Figure 25. Proposed guide for EV battery use based on SOH (derived from Canal Casals and	l Garcia) 42
Figure 26. Typical options for second-life battery repurposing	
Figure 27. Required annual revenues for three second-life battery scenarios in compariso new battery and typical energy market revenues per year	n with a 47
Figure 28. Levelized Cost of Storage based on battery price and cycles/year for second- new batteries	-life and 48
Figure 29. Estimated CO ₂ footprint from manufacturing and mobility for diesel vehicle an (charged using different electricity mixes)	ıd an EV 51
Figure 30. Potential "avoided" CO ₂ emissions from second-life EV project compared to battery and diesel vehicle use (battery manufacturing CO2 NOT included)	o a new 52
Figure 31. Map of second-life EV battery projects and MWh by country '	54
PROPRIETARY - Copyright © 2019 Clean Horizon Consulting	6

CLEANHORIZON

The Energy Storage Experts

Market Segment Watch: Second-life and recycling of electric vehicle lithium-ion batteries

February 2019

Sales support: reports@cleanhorizon.com

<u>Authors</u> Samantha Hilliard, Ph.D.

<u>Supervision</u> Michael Salomon, Ph.D.

<u>Contractual support</u> Anne-Sophie Chanu, MSc. Analyst

CEO

Admin lead

Clean Horizon

The energy storage experts from Europe

Clean Horizon Consulting Sarl 21 rue du Faubourg Montmartre – 75009 Paris - France +33 1 78 76 57 04

Subscribe to our weekly top 5 newsletter by visiting us at <u>www.cleanhorizon.com</u> Follow us on Twitter @CleanHorizon

Disclaimer

The information on this document is strictly reserved to subscribers of Clean Horizon's Market Segment Watch.

Clean Horizon Consulting disclaims any liability arising from use of this document and/or its content and/or the service offering including this document.